

07.04.2025

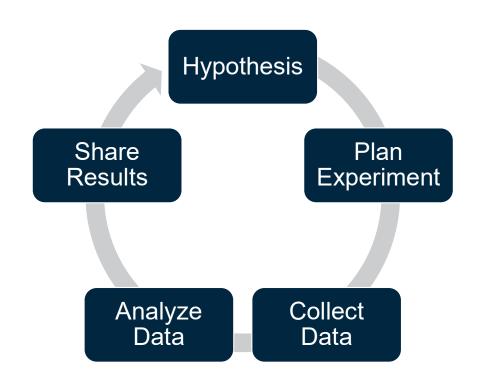
Basics of Research Data Management

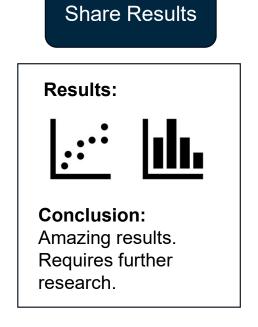
Lib4RI

Felder, Fabian Ulrich-Nath, Moushumi, Bachofner, Anusch Förster, Christian

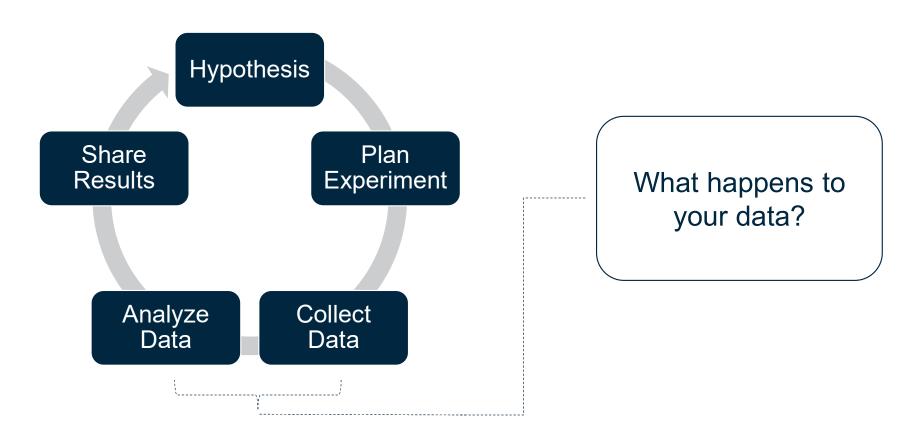
Agenda

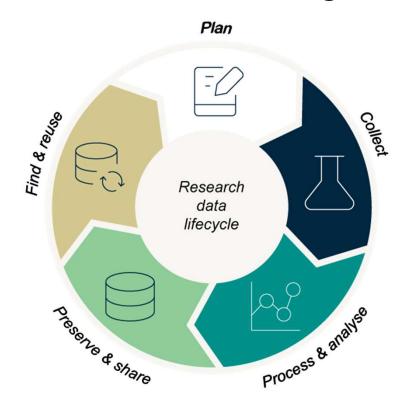
Topic	Time	
Introduction	9:00 – 9:20	
Open Science, FAIR, RDM		
Data Collection, Processing and Analysis	9:20 – 10:00	
File folders, naming, versioning, formats		
Pause	10:00 — 10:10	
Documentation	10:10 — 10:30	
README & Metadata		
Storage, Preservation, and Sharing	10:30 — 10:50	
Repositories, data availability statements, licensing		
Pause	10:50 — 11:00	
RDM Services and Support		
• Eawag	11:00 – 11:30	
• Empa	11:30 – 12:00	


Welcome Open Science, FAIR, and RDM

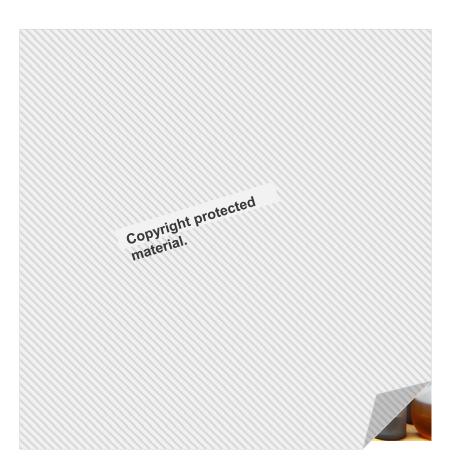


Scientific Method vs Research Data Management




Scientific Method vs Research Data Management

Research Data Management



Research data management (RDM) is the process of organizing, storing, preserving, and sharing data that is generated or used in a research project.

Why bother?

What is Open Science?

- O Q1: What's the first word or phrase that comes to mind when you hear Open Science.
- O Q2: I believe Open Science is the future of research.

www.menti.com

Open Science is a culture change.

Accessible

Transparent

Collaborative

The Turing Way project. CC-BY 4.0. DOI: 10.5281/zenodo.3332807.



Open Science is a culture change.

Reproducibility/Replicability Crisis

Global Collaborations

Arm Okay, CC BY 3.0, via Wikimedia Commons

Open Science is the future.

Policy

Incentives

Trainings

Infrastructure

Empa

<u>SNSF</u>

<u>Data</u> <u>Management</u>

Campus

Zenodo

Eawag

Horizon

ERIC

<u>PSI</u>

SciCat

WSL

EnviDat

Open Science is not just a data dump.

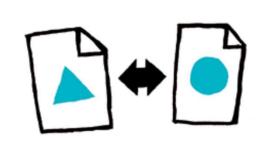
Cezary p, CC BY-SA 4.0, via Wikimedia Commons

Fotolia/TrudiDesign. <u>Tackling trash – DW – 04/23/2012</u>

What are some ways you can make your data FAIR?

Fotolia/TrudiDesign. Tackling trash – DW – 04/23/2012

www.menti.com



FAIR are guiding principles for data management.

Metadata – where can people find the data?

DOIs

Metadata – how can others access your data?

Metadata is accessible.

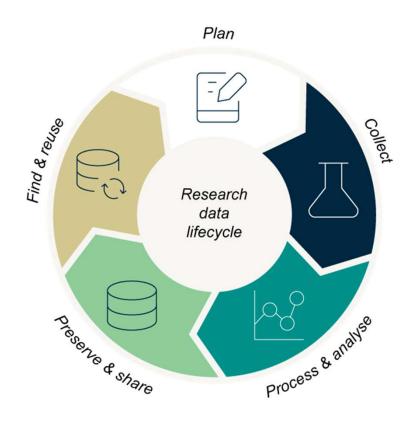
Data may be restricted.

File formats – nonproprietary, standard.

Vocabulary – standard.

Metadata – provides sufficient context to understand your data.

Licenses – determines how others can reuse your data.


Studio 4 minutes 34, Studio Lendroit.com, CC BY-SA 4.0, via Wikimedia Commons

Research Data Management

Data Management Plans

How to organize data (activity)

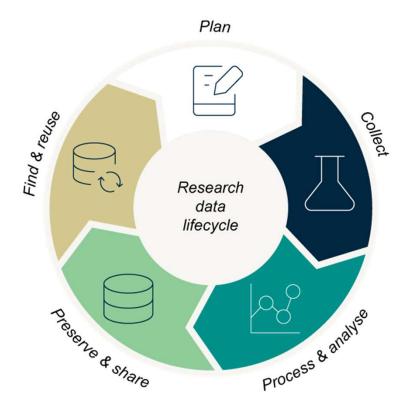
- Folder structures
- · File naming
- File formats
- Versioning

Documentation (activitiy)

README & Metadata

- Storage
- Repositories

- Data availability statements
- Licenses



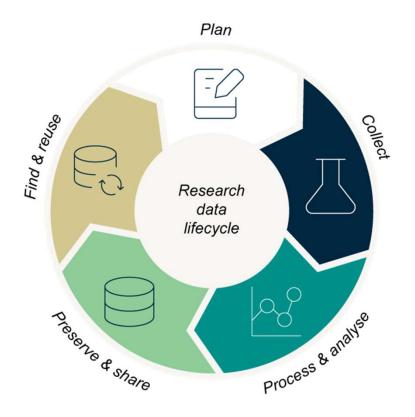
How to do RDM

Planning

Planning – the data management plan (DMP)

What types of data will be collected or generated?

What type documentation will you provide with the data?


How will data be stored during and after the project?

How will your data be shared?
How can it be accessed?

Are there any ethical, legal, or security issues to address?

Data Collection, Processing, and Analysis

Data Collection

Data

observational, experimental, simulation...

Code

Applications, scripts...

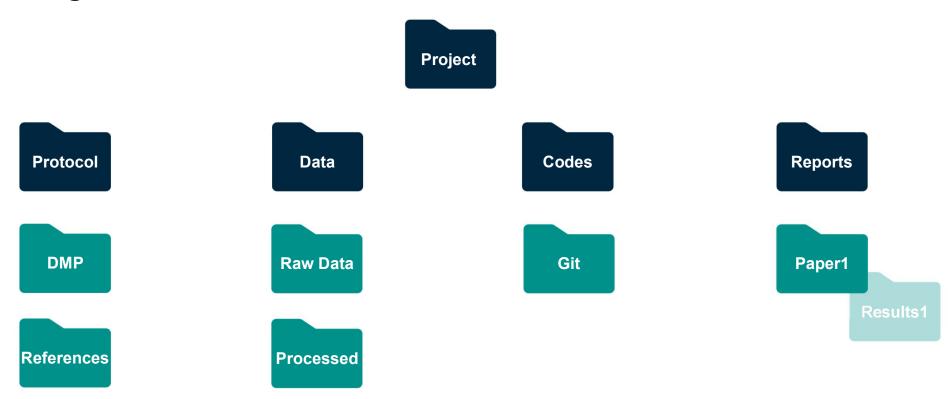
Metadata

Structured information associated with data (and code)

The Who, What, Where, Why & How of data

What to do with all this data, code, metadata?

File Organization


File Naming

Versioning

Organize data: File/Folder Structures

File Naming

Date ProjectName DocumentType Version FileExtension

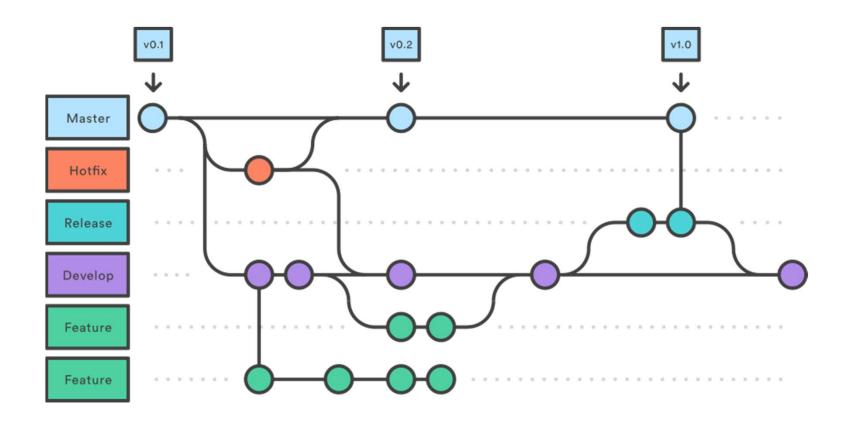
Be consistent No special characters or signs @°§°#¬@

Include Date: YYYYMMDD

Project Name: short (< 30 characters) and descriptive

Tip: Already started your project?

Use Bulk Rename Utility (Windows), Renamer 6 (Mac), Rename/Thunar Bulk Rename (GNU/Linux).


Include version: v0.8, v1.2...

Document Type: data, code, results, paper...

Software Version Control

Tools for Software Version Control

- o CLI (Command Line interface)
- GUIs (Graphical User Interfaces)
 https://git-scm.com/downloads/guis

Data Versioning

Raw rev. 0 Proc. lev. 1 rev. 0

. -

Proc. lev. m rev. 0

Raw rev. 1 Proc. lev. 1 rev. 1

- - -

Proc. lev. m rev. 1

:

Raw

Proc. lev. 1 rev. n

. . .

Proc. lev. m rev. n

rev. n

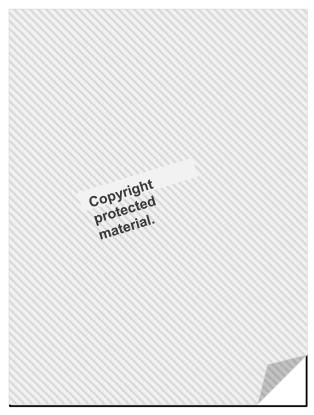
Tools for Data Versioning

Data Version Control (https://dvc.org)

Git Large File Storage (https://git-lfs.com)

Lake FS(https://docs.lakefs.io)

Tool for data and code organization



Renku (https://renku.readthedocs.io/en/stable/index.html)

What to do with all this data, code, metadata?

https://xkcd.com/2116/

Your files are organized, appropriately named, clearly versioned...but what's the point if nobody can open the #*\$)@* file??

File Formats

File formats: open and non-proprietary

Data type	Recommended file formats
Text	 PDF/A Plain Text coded as ACII. UTF-8 or UTF-16 XML
Spreadsheet	CSV (NEAD)
Images	TIFF (uncompressed or lossless compressed)PNG
Code	Languages with free environments (e.g. Py or R UTF-8 format of ASCII text)
Audio	FLACWav

Aim for open and lossless formats

If you are using a proprietary format (ex. MS word extensions xlsx, docx), consider adding an additional format.

Activity: Prepare your data. (15 min, individual or pairs)

Folder Structure

- Does the folder and file organization make sense?
- Separated raw vs processed data?

File Naming

- Is it consistent?
- Does it include:
 - YYYYMMDD
 - Project Name
 - Document Type
 - Version
 - File Extension

Versioning

- Do you have a versioning system?
- Is there a tool you can adopt to help you?

File Formats

- Are your files in nonproprietary, open formats?
 - \circ xlsx \rightarrow csv
 - \circ docx \rightarrow pdf
 - images → tiff

Data vs Metadata

https://dataedo.com/cartoon/tag/data-vs-metadata

Documentation: README and Metadata

Feature	README	Metadata
Audience	Humans	Machines (and sometimes also humans)
Format	Free-form text (txt, md)	Structured (XML, JSON)
Scope	How and Why	What and Who
Standards	Flexible	Discipline-specific
Functionality	Help others understand and use data	Facilitate searchability and machine processing

Activity: README (15 min, pairs or trios)

General Information

Sharing/Access Information

Data & File Overview

Methodological Information

Data-specific information for: [filename]

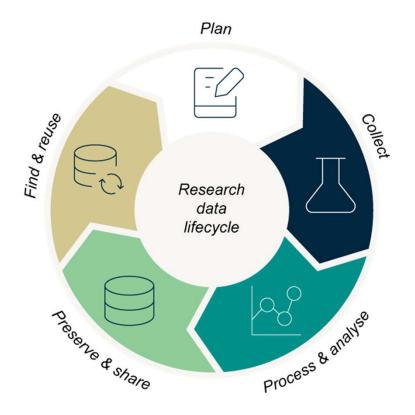
Activity: Data-specific information for: [filename]

Select a dataset/folder/file and fill in the following:

- Number of variables:
- Number of cases/rows:
- Variable List: list variable name(s), description(s), unit(s) and value labels as appropriate for each>
- Missing data codes: st code/symbol and definition
- Specialized formats or other abbreviations used

For access to entire template:

carpentries-incubator.github.io/scientific-metadata/files/AUTHOR DATASET ReadmeTemplate.txt

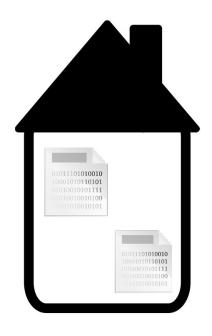

Metadata

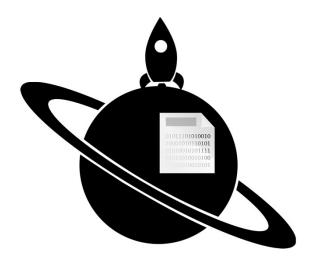
- Definition: Structured data that contains information about other data, but is not the content of the data.
- o Metadata is very subject specific. The following directories are helpful:
 - o Digital Curation Centre (https://www.dcc.ac.uk/guidance/standards)
 - o RDA Metadata Standards (https://rdamsc.bath.ac.uk)
 - o Fairsharing (https://fairsharing.org)
- Recommendation: Stick to a list of defined terms (controlled vocabulary) and don't use synonyms to describe the same object (e.g. picture or image)

Activity: Find out which metadata standard is relevant to your field (7 min)

Storage, Preservation, and Sharing

Storage

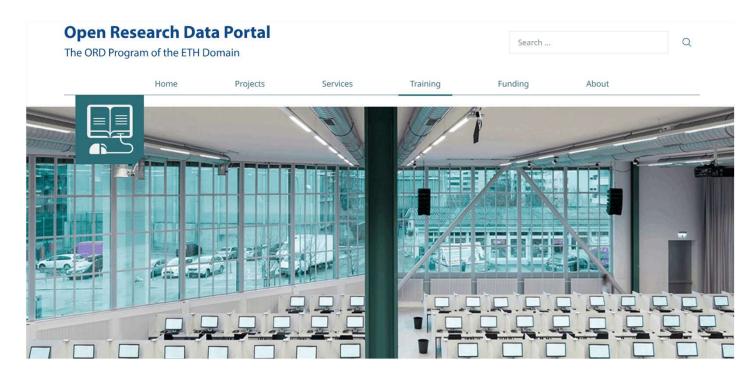

O Q: Where is your data stored and how is it backed-up?

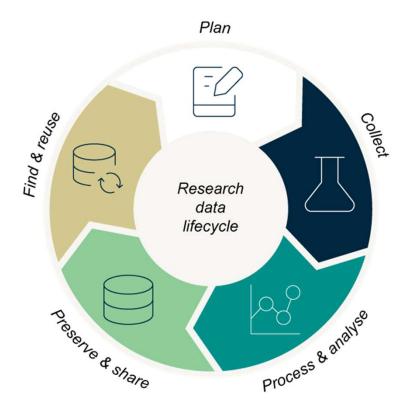

www.menti.com

Storage: 3-2-1 backup



Data repositories: publication vs preservation


For alternatives: https://www.re3data.org/


Learn more: Data Management Campus

https://open-research-data-portal.ch/training/

Finding and Reusing

Data availability statements

Where is the data stored (repository name and DOI)?

How can the data be accessed (open, restricted, available upon request)?

How can the data be reused (licensing)?

Very Famous (Open Access) Journal

Example

The data supporting this study's findings is openly available in [Repository Name] at [DOI]. The dataset includes x,y,z and is available under [License].

Licensing

Data

Code

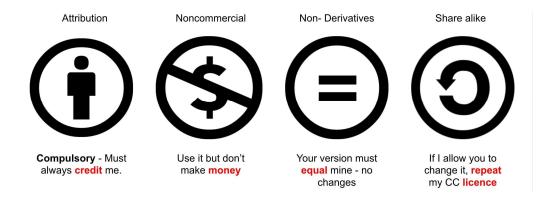
Licensing for Code

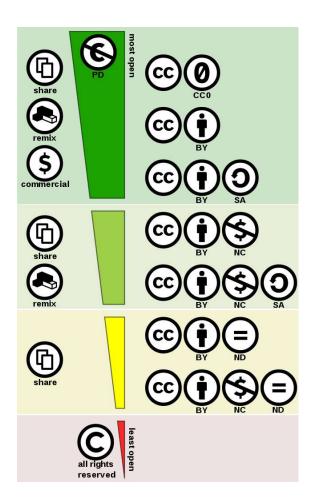
Copyleft

- Examples: GPL, LGPL
- Use cases: for projects maintaining open-source is the priority (operating systems, applications, platforms)

Permissive

- Examples: MIT, Apache, BSD
- Use cases: for projects which encourage wide-spread adoption and commercial use (libraries, frameworks, tools)


For more information: <u>Licenses – Open Source Initiative</u>



Licensing for Data

© creative commons

Planning – the data management plan (DMP)

What types of data will be collected or generated?

What type documentation will you provide with the data?

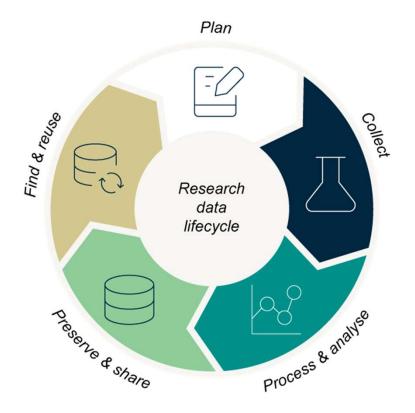
How will data be stored during and after the project?

How will your data be shared?
How can it be accessed?

File folders, file naming, versioning, file formats

README and Metadata

• 3-2-1 rule


Repositories

Data availability statements

Licensing

Research Data Management

Lib4RI – Excellent Services for Excellent Research.

fabian.felder@lib4ri.ch moushumi.ulrich-nath@lib4ri.ch T: + 41 58 765 57 00